




The effects of spectral domain modification are described. Principles
governing discrete implementation of the transform pair are discussed, and
relationships are formalized which specify minimal sample requirements for
the spectral domain.

The Constant-Q spectral magnitude and phase functions are discussed,
and three main methods are evaluated whereby the spectral phase may be
unwrapped.

Finally, the use of the transform pair is discussed in the solution of
the perception-related problem of time scale compression and expansion of
speech.
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ABSTRACT

This paper describes a constant percentage bandwidth

transform for acoustic signal processing. Such a transform

is shown to emulate behavior found in the human auditory

system, making possible both the imitation of peripheral

auditory analysis, and processing which is more closely

linked to perception than is possible using constant

bandwidth analysis.

To enable such processing, a synthesis transformation

is developed which, when cascaded with the analysis

transformation, provides an analysis-synthesis identity in

the absence of spectral modification. Various properties

of the transform pair are derived, and a filterbank analogy

is used to create a basis for intuitive understanding of

the transform's operation and properties.

Th e effects of spectral domain m o d if ic at ion are

described and shown to be related to the properties of the

analysis window function.

Principles governing discrete implementation of the

transform pa ir are discussed, and rel ationsh ips are

formalized which specify the sampling of the spectral

domain. These relationships are shown to depend

simultaneously on the analysis window function and the



selectivity (or Q) of the analysis. An alternative form of

the synthesis is given which facilitates a more nearly

optimal logarithmic sampling of the spectral frequency

axis. A minimal sampling pattern is given for the spectral

domain which has an overall rate equivalent to the rate

necessary to sample the constant bandwidth spectral domain.

The nature and computation of the constant-Q spectral

magnitude and phase functions is discussed, and three main

methods are evaluated whereby the spectral phase may he

unwrapped.

Fine resolution constant-Q spectrograms are presented

which show clearly the properties of constant-Q analysis

applied to speech.

The use of the transform pair is discussed in the

solution of the perception-related problem of time scale

compression and expansion of speech. Results of this

experiment are discussed.

Finally, suggestions for further research and

applications are presented.
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CHAPTER I

INTRODUCTION

1.1 overview

Th e usefulness, in sig nal processing, o f

transformations which produce spectral representations of

temporal or spatial data is rooted in pArt in the

underlying physiological processes which artificial signal

processing attempts to imitate or augment. This is

particularly true of the transforms used in processing

sound signals. Current interest in the short-time Fourier

transform, f or example, is related to the rough analogy

that exists between the short-time spectral domain and the

real-time analysis performed by the human inner ear .

Because the information obtained f rom the short-time

Fo ur ier transform exists in a format related to the format

in which information appears to emerge from the inner ear ,

intuitive desc riptions of signal qualities such as pitch,

temporal change, amplitude and harmonic content can easily

be related to the properties of the formal mathematical

representation. Such a relationship gives insight into

both the underlying physiological processes involved, and

into artificial processes which may be implemented to

affect perception- related changes.



Properties of transfo rmations such a s those o f the

short-time Fourier transform which relate to properties of

physical systems determine the appropriateness of s uc h

transforms as models. Clearly, as a model's properties

more completely conform to the properties of the systerm

which it attempts to emulate, it becomes more useful as a

tool for discovery of further system properties, And fo r

duplication and augmentation of processes known to occur

within the real system.

An examination of the properties of the short-time

Fourier transform as a model of the hearing process will be

taken up in the following section, leading to the

conclusion, already expressed by several researchers, that

it lacks some characteristics essential to the analysis

performed in the human auditory system. Section 1.3 then

presents preliminary evidence that a constant percentage

bandwidth (or constant-Q) transform should more adequately

model the human auditory system. Finally, Section 1.4

describes the contribution offered by this work, and

outlines the remaining chapters.

1.2 Short-time Fourier Transform Modelling of

Human Auditory Signal Analysis

A complete description of the electrical or mechanical

analogs proposed by researchers in their attempts to

partially account for properties of the peripheral auditory

system, is beyond the scope of this work. The subject is



treatf4,in'numerous references rl,2,31. In addition, the

details of the physiological system or of its analogs are

complex, resisting concise mathematical modelling, and

hence have not, to date, been useful in solving the usual

signal processing problems -- noise removal , parameter

extraction and transmission, etc.. A mathematical

transformation, on the other hand, can relate more easily

to these problems. One such transform, the short-time

Fourier transform, the properties of which are

well-understood, provides both a forward and a reverse

mapping to a domain which resembles the analysis domain of

the ear. However, even the most superficial examination of

the ear's physiology reveals weaknesses in the short-time

Fourier transform as a model of auditory analysis. The

transform conforms to the ear-property hypothesized by

Helmholtz [4I, and later corroborated by Pekesy [5] and

others, wherein spatially selective time-limited frequency

analysis is performed. It fails, however, to emulate other

aspects of the behavior observed by Bekesy. In particular,

Bekesy observed that the basilar membrane behaves as a

non-uniform or dispersive transmission line such that tones

travel a distance inversely proportional to their frequency

where they are sensed and then are rapidly attenuated. He

further observed that the envelope of a tone traveling the

length of the membrane maintains its shape as it moves the

35mm to the apex of the membrane. In other words, the

mechanical analysis performed by the inner ear was reported
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by Bekesy to have a rather low, but -onstant 0. (The

selectivity, Q, of an instrument is a measure of its

ability to resolve or respond to a particular fr equency

component independent of the presence of nearby spe-ra1

components. Selectivity is formally defined a:- 'ho riti

of the center frequency of a response peak to the -1

decibel bandwidth of that peak.) Though it has been

extended in accuracy, Bekesy's basic result that

frequencies are resolved with roughly constant selectivity

at positions logarithmically spaced along the length of the

basilar membrane still seems correct. The value for the Q

of the ear's analysis, convergently verified by recent

experiments, has been specified by Searle [6]. He gives

the resolution as roughly one third of an octave (a Q equal

to about 4.3). As described in Chapter 2, the short-time

Fourier transform behaves as a bank of equally spaced,

constant bandwidth filters. Hence, analysis preformed at

high frequencies is over-resolved in frequency while that

performed at low frequencies may be under resolved. This

difficulty in the constant bandwidth short-time Fourier

transform has been noted by Callahan [7], who points out

that for speech analysis, the window length is a compromise

between adequate time resolution at high frequencies and

enough frequency resolution at low frequencies. In speech

processing schemes where accurate pitch and vocal tract

resonance information are required simultaneously, the

dilemma is insoluble, and separate pitch extraction is



ordinarily necessitated. Clearly, constant-bandwidth

analysis fails in this respect as a model of peripheral

auditory analysis. The list of other ear phenomena not

described (at least not trivially) by the constant

bandwidth analysis model includes Tartini's combination

tones, Seebuck and Schouten's residue pitch, Sachs and

King's two tone suppression and many other phenomena. The

above phenomena are complex and have been described by

Searle [6) as having second order importance in initial

efforts to model the ear via mathematical transformations.

Despite the failure of the short-time Fourier

transform to model the essentially constant-Q nature of

analysis performed by the ear, its two dimensional nature

has proven useful in many applications. Among these are

the phase-vocoder f8,9,10], perceptual rate change proposed

by Flanagan (1] and recently implemented by Portnoff ill1,

and various two-dimensional modi fication experiments

involving noise removal, feature isolation and enhancement

and bandwidth compression all performed by Callahan (7].

Both Portnoff and Callahan noted the limitations imposed by

the constant bandwidths in their experiments, and pointed

out the possible advantage inherent to a constant-Q

implementation of their systems.

1.3 The Constant-Q Alternative

The notion of constant-Q signal analysis is not new.

The analog spectral analyzer has been performing constant



percentage bandwidth analysis for decades. That constant-Q

analysis could be formalized mathematically was recognized

in 1971 by Gambardella [17], who proposed a "multiple

filter analyzer integral."

F(w,t) = I f (T)h(t-t,-)e - j  dr (.

(Note that integration intervals for all integrals in this

work are assumed to be (-c, ) unless otherwise stated.'

This analysis integral is a generalization of the

short-time Fourier integral transform in the sense that its

analysis window is a function not only of time4.lbut also of

analysis frequency. Gambardella pointed out that certain

forms of this integral function permit a reverse transform,

and that one particular form exhibits constant-Q character.

Related efforts directed at the problem of constant-Q

signal analysis have centered attention on the notions of

warping the frequency axis and non-uniform sampling of the

z-transform. These efforts are reviewed in Chapter 3.

1.4 Contribution and Outline of this Work

The contribution of this work involves formalization

of a constant-Q transform and the definition of the

properties of the transform as it pertains to acoustic

signal processing. Attention has been given to

mathematical establishment of both the properties of the

forward transform and and reverse transform so that

processing which uses the transform may be well-understood.
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The effect of spectral domain mod if ication, an important

issue where signal processing is the goal of analysis, has

been discovered and described. Because, to date, no form

of the analysir transform anilogous in speed and el ganre

to the FFT has been found, care has been taken to derive

and articulate relationships governing the sampling of the

constant-Q spectral domain. A pattern which allows minimal

sampling has been described, and an algorithm presented

whereby sampled analysis may be achieved at the expense of

a complex demodulation and fast convolution on each

analysis chanrel. The nature and computation of the

spectral magnitude and phase functions has been discussed,

including the problem of spectral phase unwrapping. As an

illustration of the use of the transform pair, the

perception-related problem of time compression and

expansion of speech was solved using the transform,and the

performance of the algorithm in this application evaluated.

Chapter 2 contains a discussion of generalized

short-time Fourier transform analysis and synthesis, as

well as a discussion of the effects of spectral

modifications. This material is provided primarily for

reference, since many constant-Q concepts are more easily

understood by analogy with constant bandwidth concepts.

Chapter 3 then presents the constant-Q transform in a

development which parallels that in Chapter 2. One of the

family of possible reverse transforms is developed. The

effect of constant-Q spectral modification is discussed,
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and a number of useful transform properties are given.

Chapter 4 handles a collection of topics which do not

properly fit into Chapter 3, but which are of practical

importance. These include the various implementation

issues, such as sampling, filterbank design, computation

schemes, and the nature and computation of the constant-Q

spectral magnitude and phase functions.

Chapter 5 describes the use of the transform to effect

modification of the rate of articulation of speech (not to

be confused with scaling the time index). A comparison is

made between this and previous work with this problem.



CHAPTER 2

THE SHORT-TIME FOURIER TRANSFORM

2.1 Introduction

The mathematics of the short-time Four ier integral

transform and its discrete counterpart have been clearly

laid out in a number of standard sources. However, because

many of the concepts of the following chapter closely

parallel ideas encountered in such a development, a brief

review of the continuous forward and reverse transforms,

their properties, and the effect of spectral modifications

will be presented here. We shall also find it convenient

to introduce in this familiar development many of the

symbols and terminology used throughout this work.

2.2 Short-time Fourier Analysis

The continuous Fourier integral transform,

F(w) =f f(t)e- jw dt (2.1)

and its inverse,

f(t) f F(w)e j~ dw (2.2)

have a fundamental limitation: while F(W) has infinitesimal

frequency resolution, it fails to provide any information

about how frequency information varies as a function of
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time. The concept of spectral information which changes

with time does not exist. This limitation is remedied by

weighting the time signal in an area of interest using a

function which is generally smooth and which has limited

non-zero extent. (Such a function is often referred to as

an analysis window. The Hann window is a familiar

example.) The weighting function imposes, by reason of its

non-zero duration, a finite time resolution. A less

obvious effect of forcing the Fourier integral transform to

operate locally is that the frequency resolution of the

transformed signal is no longer infinitesimally fine, since

it has been "smeared" by convolution with the Fourier

transform of the weighting function. If this

resolution-limiting window is allowed to slide along the

time axis, as in the short-time Fourier integral transform,

F(w,t) = f f(T)h(t-T)e -jWT dT (2.3)

the transform then becomes a function of two variables and

yields local (finite resolution) information about the

input signal.

2.3 Resolution and Sampling Issues

The terms, "time resolution" and "frequency

resolution," used above, require a more formal definition

if they are to be useful in discretization of the

short-time Fourier transform. Suppose the time and

frequency resolutions of constant bandwidth analysis are

_ ,I ... . ..... . -OE M



def ined as the time and frequency intervals over which the

window function and its Four ier transform a re

"significant." Clearly this definition involves a degree of

ambiguity (and therefore approximation) in the

identification of the respective intervals. Hence, a

definition is adopted here, equivalent to that usedi by

Allen (13], which allows precise determination of the time

and frequency resolutions associated with a window

function, h(t) . The finite, non-zero extent of h(t) is

defined to be the time resolution, T , of the window. if

by H (w) we denote the Fourier integral transform of h(t)

the frequency resolution, FOO, of the analysis is given by

the extent of the principal interval around zero wherein

H(w) is positive-valued. (The subscripts of To and FO will1

become more useful in Chapter 4. They indicate the

attenuation of the window or its transform at the edges of

the resolution determining interval.)

The time scaling property of the Fourier integ ral

transform (141 guarantees that the product of the time and

frequency resolutions will be a constant. Hence, we may

wr ite

$.= T.F. (2.4)

where a. is a constant whose value is a consequence of the

choice of window function and of the definitions of T and

F.. Easily computable values for 0. are given in Table A.1

of Appendix A for a few common windows assuming the
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above-stated definitions of T and F

Combined with the celebrated Nyquist sampling theorem,

this information is sufficient to permit sampling of the

short-time Fourier spectral domain without loss of

information. In particular, the density of time samples

must be greater than FW, and the density of frequency

samples must be greater than T . Hence, if the time and

frequency sampling intervals are respectively At and Af,

At < 21F (2.5)

Af < (2 -TT_)l (2.6)

Thus, for instance, a 25.6 millisecond Hann window

gives rise to a spectral domain which must be sampled at

least every 6.4 milliseconds in time and every 39.0625

Hertz in frequency if information is not to be lost.

(It should be noted that under special conditions [15]

restrictions on the analysis window function permit

synthesis from undersampled spectral data. In general,

however, and where spectral modifications are to be

performed, synthesis depends on proper spectral sampling as

defined).

The discrete representation of the short-time Fourier

transform will not be presented here, but is discussed in

several sources [7,10]. The sampling theorem is reviewed

primarily because a similar argument will be needed in

connection with the constant-Q transform, and because the

. . ",
I
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notion of analysis at discrete frequencies is useful in

developing the following analogy.

Suppose the short-time Fourier transform is evaluated

at a set of discrete frequencies, wk=kAf. If for each k

the complex exponential in 2.3 is a,ssociated with the input

function, the result is recognized to be a convolution

(denoted throughout this work by the binary operator, "*").

F(w k,t) = f(t)e-J Wkt * h(t) (2.7)

In this form of the analysis expression, the short-time

spectrum at any w k is recognized to be a lowpass version of

the complex demodulated input signal. A simple change of

variables in 2.3 allows the complex exponential to be

associated with the window function in the convolution.

This results in still another form of 2.3.

F(w k,t) = e-J Wkt {f(t) * h(t)eJWkt} (2.8)

Because the various bandpass filters resulting from the

complex modulation of h(t) by wk form a continuous bank

this form of 2.3 has been called the filter bank analogy.

It is shown schematically in Figure 2.1.

2.4 Short-time Fourier Synthesis

The nature of the short-time Fourier synthesis

integral is suggested by observing that the analysis

presents at every instant a frequency-shifted set of

contiguous lowpass representations of the original, and

7.
_ _L



e- JW 0 t  e JW 0t

H~~vJw t

e-J~l t llit1 (21Th(9)

f(t) BANDPASS F(wI ,t) f(t)

H(v-w 1 )

e-JO'N. It eJo)N_ I t

BANDPASS F(w NI t)

H(v-wN- 1 )

Figure 2.1. Filterbank analogy to short-time Fourier
analysis and synthesis. Synthesis via the filterbank sum-
mation (FBS) method is shown here. As elsewhere, v is the
Fourier frequency parameter associated with the transformed
spectral time axis, and each is an analysis center frequen-
cy measured along the w-axis.
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that, re-shifted, these signals should add up to produce a

scaled version of the original. This V.oposed synthesis is

shown schematically in Figure 2. 1. In integral form the

synthesis is,

1 ji

f(t) f F(w,t)eJwt d .
27Th (0)

Equation 2.9 is not, however, the most general form for

short-time Fourier synthesis, but is in fact a particular

case of the more general form given below.

f(t) = f _ F(w,t)g(t-T)e j t dw d, (2.10)

2n<g(t) ,h(t)>

where <g(t) ,h(t)> is the inner product,

<g(t),h(t)> = <g,h> f g(t)h(t) dt (2.11)

of g(t) and h(t) , and g(t) is a window function having

restrictions similar to those applying to the analysis

window, h(t). That this more general form of synthesis

provides an analysis-synthesis identity in the absence of

spectral modification is shown in Appendix B.

The significance of the existence of a more general

form of 2.9 involving a synthesis window will be discussed

in Section 2.4. It suffices for now to identify two

members of the family of synthesis forms. These two forms

result from specifying the synthesis window to be either of

the limiting cases, g(t)=6(t) or g(t)=l. (Here and

throughout this work " 6 (t)" will represent the Dirac delta

"function." Although technically not a function, the Dirac



delta provides notational and operational short-cuts when

used with care. Its properties and use are described by

Papoulis (14] and Lighthill (16]). In the first case,

where g(t)=l, 2.10 reduces to

f(t) = ff F(w,T)e j Wt  d, di / 27 f h(-) d-: (2.12)

If the window area is constrained to equal unity, this

expression is recognized as a continuous version of the

overlap-add (OLA) synthesis proposed by Allen (13].

The more familiar synthesis expression, 2.9, which for

reasons described above is called the filter bank summation

(FBS) synthesis is derived from 2.10 by setting g(t)=6(t).

2.5 Effect of Spectral Modifications

In some applications, where parameter extraction is

the goal, or where complete spectral information is to be

transmitted over a noiseless channel, the effect of

spectral domain modifications is not important. However,

in many applications, modifications to spectral information

occur either unintentionally or as a main feature of the

processing attempted. In these cases, the effect which

spectral domain changes have on the synthesized signal must

be understood. As implied in Section 2.3, the OLA and FBS

synthesis integrals yield an identity when cascaded with

the short-time analysis of 2.3. These synthesis integrals

differ, however, in their effect on the mapping between the

spectral domain and the time domain if spectral domain
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signal modifications are allowed. The reason for, and

implications of this behavior are the subjects of the

present section.

Recall from Section 2.2 that the short-time Four ier

transform of a signal has f inite time and frequency

resolution, given by T and F .From this fact alone, it

is clear that the set of short-time Fourier spectra defined

by 2.3 does not, for any given h(t) , include every possible

complex-valued, two-dimensional function. In other words,

the mapping performed by 2.3 from the complex line to the

complex plane is not onto. The situation is shown

graphically in Figure 2.2 where the shaded area is the

subplane reachable from the complex line via the short-time

Fourier transform for any particular window, h(t) . The

family of reverse mappings (called left inverses or

retracts) specified by 2.10 maps the whole plane onto the

line. If the portion of the plane not reachable from the

line could be excluded from our interest, simplicity or

computational expediency could dictate our choice of

synthesis integral from among the family implied by 2.10.

However, because spectral modification often attends

spectral domain processing, and because nearly all additive

noise as well1 as many useful modifications map signals

outside the subplane, the effect of various retracts on the

analysis-synthesis system in the presence of spectral

modifications is important.

While many types of spectral modification are possible
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F' (w, t
Intended

modi fi cat i on

f"(t) ,

Effective/
/modificatio

Fwt) (Original

FUCTONsgnal)

FUNCTIONS ON THE
COMPLEX LINE

FUNCTIONS ON THE
COMPLEX PLANE

Figure 2.2 The effect of spectral modification. The
arrows between the line and the plane indicate mappings
available using the short-time (or the constant-Q) forward
and reverse transformations. The shaded domain delineates
the set of spectra, F(w,t), reachable from the time domain.
Many spectral modifications map the signals, F(w,t), to
signals, Fl(w,t), which lie outside of the shaded region.
These "illegal" modifications are mapped to effective
"legal" modifications, F"(w,t), by synthesis followed by
reanalysis.

A-
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(convolutional, multipl icative, additive, etc.), the

effects to be expected from spectral modification and the

method for determining such effects can be conveniently

illustrated by considering multiplicative modification.

The general relationship between an intended spectral

modification and its associated effective modification (see

Figure 2.2) may be established for changes of a particular

form by substituting 2.3 into a version of 2.10 which

reflects the change in question.

Suppose F(w,t) in 2.10 is multiplied by the

time-varying function, C(w,t) as in 2.13.

1jt
(t) - ff F(w,-)C(w,i)g(t-r)e j t dw di (2.13)

S27t<g,h>

Expanding F(w,t) in 2.13, reassociating factors, and

interchanging the order of integration leads to the

following:

1
(t - ff f( )h(r- )g(t-T) (2.14)

<g,h>

1 C(W,T)e j W( t - ) dw dE di
2 7

In this, the one-dimensional inverse Fourier transform of

C(.,t) e - j  ,  denoted c(t- ,T), is recognized.

Interchanging the order of integration once more yields

1
(t) - f f() f C(t-C,T)g(t-T)h(T- ) dT dC (2.15)

<g,h>

If the inner integral is rewritten symbolically as

c(t-CC) , 2.15 becomes the superposition integral,
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1

l(t) - ff( )C(t- 6) d (2. 16)
<g,h> f~CtC0d

If C(w,t) is momentarily constrained to be a function of

only, 2.15 is seen to be a simple convolution, a result

expected from the convolution property of the Fourier

transform. If the time dependence is readmitted,

interpretation of 2.15 becomes more difficult, but is

possible if g(t) is sufficiently constrained.

As examples of the interpretation of 2.15, we will

consider the particular cases of g(t) mentioned in Section

2.4. Suppose, for instance, that g(t)=6 (t) as in FBS

synthesis. Then,

C(t-C, ) = C(t-C,t)h(t-C) (2.17)

The intended modification has been time-limited by h(t)

(blurred in the frequency domain) but is seen to "take

effect" instantaneously in time. This result matches the

behavior described by Allen and Rabiner (15] for spectral

modifications made prior to FBS synthesis. In the case of

OLA synthesis (that is, when g(t)=l), 2.16 becomes

C(t-,)= f C(t-C,T)h(T-) dT (2.18)

Note that, in contrast to the FBS result, the intended

modification is smeared in time (band-limited by h(t)). A

more intuitive description of the above effects is taken up

in the second section of Appendix B.
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The implications of the above results are important.

Although the FBS and OLA forms of the general synthesis of

2.9 are most practical, they may not always exhibit desired

spectral modification behavior when changes are to be made

in the spectral domain. Also, as a resul t of the fact that

time or frequency limiting of intended modifications may

occur, smearing in the Fourier transform domain may cause

the modification function to extend beyond the limits

implied by the spectral time or frequency sampling

densities. Hence, care must be taken to sample densely

enough in time and frequency to prevent time or frequency

aliasing due to spectral modificati .



CHAPTER 3

THE CONSTANT-Q TRANSFORM (COT)

3.1 Introduction

The purpose of the present chapter is to introduce, in

a development similar to that of Chapter 2, the constant-Q

transform. In this development, the forward and reverse

transforms, their interpretations, the effect of spectral

domain signal modifications, and some basic transform

properties will be presented. An attempt has been made to

describe concepts in terms which facilitate comparison with

similar constant bandwidth, short-time Fourier transform

concepts.

3.2 Constant-Q Fourier Analysis

Gambardella [17,18] has proposed a generalized

short-time Fourier analysis integral for continuous time

signals in which the observation window is a function of

both the time and frequency parameters of the analysis.

F(w,t) = f f(t)h(t-T,w)e-j~t dt (3.1)

The conventional short-time Fourier integral transform and

the standard Fourier integral transform can be considered

to be special cases of this transform, obtained from 3.1

when h(t-T,u) equals h(t-T) or when h(t-r,w) equals unity,

. ...i " - . . .. , ,, I I I I I
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respectively. However, as noted by Kajiya 119], a very

interesting member of this transform family arises if the

window, and therefore the complex transform kernel, is a

function of the product of time and frequency. For any

analysis frequency, the resulting transform's window length

in analysis wavelengths, and therefore the number of cycles

of the complex kernel sinusoid, is a global analysis

constant. Hence, the measurement of frequency content

obtained by integrating the product of the sinusoid and the

signal is always the result of estimation over the same

length in wavelengths of the frequency in question. This

produces the time and frequency resolution effects expected

from a constant percentage bandwidth transform. To see

more clearly that this is true, the constant-Q transform,

given in 3.2,

F(w,t) = f f(-r)h((t-T)w)e - j  dr (3.2)

will be described in the context of a filterbank analogy

similar to that used in Chapter 2 with the short-time

Fourier transform.

Suppose the constant-Q spectrum is sampled at a set of

frequencies, wk' whose spacing does not exceed the upper

limit imposed by the analysis resolution of the transform

at each frequency. (We shall have more to say about

sampling the constant-Q spectrum in Chapter 4). Then, if

for each wk 3.2 is recognized as a convolution, it may be

written as
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F(wk t) = f(t)e - jWt * h(w kt) (3.3)

As in the constant bandwidth case, a simple change of

variables in 3.2 leads to an alternative form of the

analysis integral.

F(Wk? t)eJwkt = f(t) * h( t)'ukt (3.4)

Fourier transforming both sides of this equation (and

invoking the convolution property of the Fourier integral

transform, 3.4 can be rewritten as

FV(wk ' v - wk) = F(v)H((v-wk)/Wk)/iwkl (3.5)

Here v is the Fourier frequency parameter, and F(v) and

H(v) are the Fourier integral transforms of f(t) and h(t),

respectively. Also, FV (Wk ,v) is the Fourier integral

transform of F(wt) with respect to t (again the Fourier

frequency parameter is v ) . The right hand expression

clearly indicates the filterbank behavior of the transform.

At each analysis frequency, the input signal is linearly

filtered by a basic lowpass filter which has been frequency

shifted, then amplitude and frequency scaled by the

analysis frequency, wk If each filterbank output is

subsequently frequency shifted by -wk' the result is that

given by 3.4 and shown schematically in Figure 3.1. The

difference, then, between the filterbank interpretations of

the constant bandwidth and constant-Q transforms lies in

the frequency stretching and amplitude scaling of the
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e-Jw 0t e j o0t

a s s F(yot)

e-Jsb t e jw t  1/i

f~t)H(-)

'--- / 1)F(wl .t)

e- jwN-t e JWN-1 
t

Figure 3.1. Filterbank analogy to constant-Q analysis

and synthesis. Filterbank summation (FBS) synthesis,

described in the text, is used here.
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bandpass filters of the constant-Q filterbank. This

difference is crucial however. The frequency resolution,

F ( k ), of the kth analysis filter is shown in 3.4 to be

directly proportional to its center frequency, . A bank

of such filters is shown in Figure 3.2. Cn the other hand,

the temporal extent, T wk) , of the kth analysis filter is

seen in 3.4 to be inversely proportional to )k" Hence, the

uncertainty relation which governs time and frequency

resolutions for the short-time Fourier integral transform,

also governs the resolution of the constant-Q transform,

though both resolutions are fixed in the former case. This

difference is not unexpected, but is a fundamental stimulus

for a study of the constant-Q transform as a model for

auditory analysis.

3.3 Other Schemes for Non-uniform Bandwidth Analysis

The importance of the above behavior, although it

trivially arises from 3.2, cannot be over-emphasized.

Recognizing the fundamental importance of non-uniform

frequency analysis, several schemes have appeared in the

literature by which Fourier frequency information is

sampled at frequency intervals which become wider as

frequency increases. A very simple scheme involves

sampling the z-transform at non-uniformly spaced points

along the unit circle. The recoqnition that this may cause

the highest frequencies to be undersampled suggests the

possibility of somehow representing local unsampled
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information in the samples which are taken. This is

typically attempted by computing a weighted average along

the frequency axis of the uniformly sampled short-time

Fourier transform in the neighborhood of each new frequency

sample. Clearly, the reduced frequency resolution of each

sample fails to produce the additional samples required by

the implied increase in time resolution, so that unless the

short-time Fourier transform is initially oversampled by

the amount necessary to produce adequate time resolution

after frequency averaging, the information surrendered to

the average is lost as surely as if no averaging had been

performed. However, with proper attention to sampling

issues, this algorithm can be shown capable of producing

results equivalent to those formalized in 3.5. Another

method is that explained by Oppenheim, Johnson and

Steiglitz [20] wherein a sampled input function is passed

through a unity magnitude shift-invariant network which

produces another sequence whose Four ier transform is

related to the Fourier transform of the original sequence

by a change of frequency variable. The practical

constraint of Fourier transforming the modified sequence

using a finite length DFT necessitates windowing the time

data. Th is windowing corresponds to uniform smearing of

samples along the new non-uniform frequency axis. Hence,

the bandwidth, or frequency resolution of each frequency

sample is related to its center frequency and to the

frequency domain distortion function. This windowing step
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gives the method the appearance of constant-Q analysis.

However, as will be shown in Chapter 4, a properly sampled

constant-Q spectrum has exponentially spaced samples.

Unfortunately, the set of frequency axis distortions

available to the method does not include a logarithmic

transformation. Hence, the method is not truly constant-Q.

Another method, due to Helms (211, approximates the

Laplace transform at exponentially spaced frequency

intervals, and produces a representation wherein, as

frequency increases, the ratio of frequency to bandwidth

increases. However, the method is only asymptotically

constant-Q.

3.4 Constant-Q Fourier Synthesis

A condition necessary to the general usefulness of any

analysis scheme is that the analysis be reversible.

Schemes wherein the uncertainty relation is violated are

destructive of information and hence analysis performed

using these schemes is not reversible. The reversibility

of the constant-Q transform will be discussed in this

section, and a reverse transform given.

As for the short-time Fourier integral transform (and

for the same reason) a true, two-sided inverse does not

exist for the constant-Q transform. Rather, a family of

left inverses or retracts exist which map the subspace of

complex-valued, two-dimensional functions reachable from

the complex line via 3.2 back to the complex line.



The nature of one member of this family of reverse

mappings is suggested by the observation that in the

frequency sampled analog of 3. 5 the various filterbank

outputs are frequency-shifted outputs of a bank of

contiguous bandpass filters. To be sure, the filters are

not of uniform width or amplitude; however, the information

is all there. This suggests the existence of a continuous

synthesis integral of the form

I
f(t) = - f F(o,t)e j Wt  dw (3.6)

k

wherein the various complex demodulated filterbank outputs

of 3.4 are simply remodulated, summed, anJ normalized by a

constant, k. (The value of k will not be defined at this

point. It is related to the analysis window.) As an aid to

reader intuition, a plausibility argument for this

synthesis, also referred to herein as filterbank summation

(FBS) synthesis will be given. One way to demonstrate the

overall effect of filterbank analysis and synthesis is to

compute the frequency response of the entire

analysis-synthesis system. Referring to Figure 3.1, the

responses of the various filters of the constant-Q

filterbank are given by

P(w,v) = H((v-w)/w)/IwI (3.7)

The overall response of the filterbank may be computed as

the sum of the component responses. Such a sum, shown in

Figure 3. 3 for a discrete-frequency analysis-synthesis
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system, is expressed symbolically as

1(v) = f (w,v)dv f H(('u-w)/w)/KI dw (3.8)

A set of conditions sufficient for the existence of this

integral is described in Appendix C. For common windows,

such as the Hanning window used in this research, the

conditions are equivalent to the requirement that the

zero-frequency component passed by any filter of a

constant-Q filterbank be null. This amounts to a reduction

of the set of allowable values for Q to integer multiples

of some minimum value.

Given the above existence conditions, the change of

variables, w = aw and v = av (a>O), leads to

4(av) = f H((civ-aw)/iw/IcLwa dw (3.9)

which for positive reduces trivially to D(v). Since, as

shown above, the value of D(av) is independent of a, we

must conclude that the value of the filterbank sum, D(V),

is everywhere a constant. Hence, a properly constructed

constant-Q filterbank responds to within a multiplicative

constant as an identity system when its outputs are simply

summed. The actual value of this multiplicative constant,

k (occurring in 3.6), is ordinarily difficult to derive

either analytically or numerically. In the author's

implementations, empirical determination of the constant

was employed.

At this point, it is useful to note that the above
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synthesis may also be performed along a logarithmically

warped frequency axis if w (w,v) is used as the integrand

instead of (,v) . (Such a filterbank and its sum are

shown in Figure 3.4 for a discrete set of frequencies.) The

proof is simple, and consists of noting that since

1
d(log(w)) = d (3.10)

we may rewrite 3.8 as

1(v) f w (v,w) d(log()) (3.11)

This form of synthesis is significant because, as will be

seen in Chapter 4, the scheme by which the constant-Q

spectral domain is minimally sampled uses exponentially

spaced frequency samples.

Another form of the constant-Q synthesis has been

proposed by Kajiya [19] in connection with his

two-dimensional Mandala transform development. This more

general synthesis form is interesting, providing insight

into the nature of the above mentioned family of retracts

associated with constant-Q analysis. However, the limiting

scheme required in the more general synthesis translates

less simply into discrete implementation. Hence the analog

to short-time FBS synthesis proposed in 3.6 was used in

this research.

3.5 Effect of Spectral Modifications

As in the constant bandwidth case, various members of

tLLh
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the family of reverse transforms map points in the

analysed-signal space which are not reachable via the

forward transform back into the signal space differently.

The reason for and nature of this fact should be clearly

understood before processing is attempted on a spectral

domain signal. Unfortunately, the complexity of the

forward and reverse transforms makes derivation and

interpretation of such information difficult for most

modification types. However, an example indicating the

technique of such a derivation and showing the

interpretation of results will be given here.

Assume that a multiplicative modification which is

constant in time is to be applied to a spectral domain

signal prior to synthesis via FBS synthesis. Symbolically

we write

1
f(t) = - fF(w,t)G(w)ejwt dw (3.12)

k

1 jWt
f(t) = - ff f(t--t)h(wT)e-JW(t-r) dT G(w)e dw (3.13)

k

f(t) =- ff f(t-T) f G(w)h(wT)e3W dw dr (3.14)
k

1

f(t) =- f f(t-)g(-T) dT (3.15)
k

wh er e
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g(T) f G(w)h(wt)e T dw (3.16)

Clearly, the effect of such a modification is to filter the

input signal using a linear, time-invariant filter. The

nature of the effective filter, however, depends on not

only the attempted modification function, G(w), but as

suggested by 3.15 and 3.16, is determined by the analysis

window as well. Tf G(M) is used to denote the Fourier

integral transform representation of g(t) , the following

can be written:

G(v) f g()e- j V  dT (3.17)

G(v) = ff G(w)h(wr)e)W dw e-  dr (3.18)

G(v) = ff G(w)H((v-w)/w /IwI dw (3.19)

The effective modification is the result of a stylized

superposition involving the intended modification and the

analysis window function. This operation may be viewed as

a weighted sum of the filters in the filterbank. The

result of such an operation, even though the weighting

function may have arbitrarily fine frequency resolution, is

constrained to have frequency resolution which is dictated

by the analysis filterbank. Hence, effective modifications

are constant-Q versions of intended modifications.

The situation becomes slightly more complicated if the

intended modification is allowed to vary as a function of
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time and frequency. This new multiplicative modifier is

denoted below as C(w,t).

f(t) = ff f(t-T)h(wt)e -  dT C(w,t)ejt dw (3.20)

k

1
f(t) = - f f(t-r) C(T,t) dT (3.21)

k

where

C(T,t) = f C(w,t)h(WT)e jW dw (3.22)

This result parallels the stationary result given above,

except that the effective fil ter is combined by

superposition with the input signal. In the frequency

domain,

C(v,t) = fC(w,t)H((v-w)/w/I w dw (3.23)

Again, the intended modification acts as a weighting

function on the various filterbank functions. In 3.23

however, the weighting function is permitted to change

instantaneously in time, a result analogous to constant

bandwidth FBS synthesis.

3.6 Transform properties

This section states or points out the absence of a few

properties of the constant-Q transform which are analogous

to the usual Fourier transform properties. In what

follows, define
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f(t) - F(w,t) (3.24)

to be an equivalent statement to equation 3.1.

3.6.1 Linearity Property

If F1 w,t) and F2 (w,t) are the constant-Q transforms

of f1 (t) and f2 (t) , respectively and al F 1 2  are two

arbitrary constants, then

a 1f 1 (t) + a 2 f 2 (t) + a 1 F1 (w,t) + a 2 F 2 (w,t) (3.25)

The proof is a trivial result of the linearity of the

integral operator.

3.6.2 Time Scaling Property

If a is a real constant not equal to zero,

f(ott) - F(w/a,at)/jaj (3.26)

To prove this property, assume that P(W ,t) is the

Constant-Q transform (CQT) of f(at). Then,

P(W,t) = f f(aT)h((t-T)w)e - jWT dr (3.27)

With a change of variables,

(w,t) = f f(t)h((at-T)w/ t)e-j wt/a dt/joaj (3.28)

P(w,t) = F(w/a,at)/IaI (3.29)

The absolute value results because, for less than zero,

the limits of integration are reversed by the change of

__ -
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variable. Notice that the short-time Fourier integral

transform does not share this property.

3.6.3 Time Shifting Property

If t0 is a real constant,

f(t-t 0) - e -jw t0  F(w,t-t 0 ) (3. 30)

To prove this property, assume that '(w,t)' is the CQT of

f(t-t 0 Then,

?(",t) = f f(t-t 0)h(t--)w)e-3 d (3.31)

With a change of variables,

F(w,t) = e 0  f f(T)h(w((t-t 0)-T))e dT (3.32)

F(w,t) = e- jwt 0 F(w,t-t 0) (3.33)

3.6.4 Conjugate Property

If by superscript "*" the operation of complex

conjugation is denoted, and if we assume h(t) to be real

and even,

f (t) - F (-w,t) (3.34)

The proof is as follows:

P(W,t) = ff (T)h((t-T)w)e -jwT dr (3.35)

P(w,t) = ((f f*(T)h((t-T)w)e- jWT dT)) (3.36)

Changing variables,

£ " -S|i , i II I
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t (f f(h( (tT)w)e] j d T (3. 17)

and with h (W(t-T)) = h(-w(t-T)),

F(w,t) = F (-u,t) (3. 3f

3.6.5 Symmetry Properties

If f(t) is real, and if h(t) is real and even, then

F(j,t) is conjugate symmetric with respect to w (that is,

F(w,t) =-F (-w,t)).

If f(t) is imaginary, with h(t) as above, then F(V ,t)

is conjugate anti-symmetric with respect to ) (that is,

F(w,t) = -F (-w,t)

Both of the above follow directly from linearity and

the conjugation property.

3.6.6 Other Properties

The independent frequency shifting and scaling

properties normally associated with the Fourier integral

and short-time Fourier integral transforms do not have

simple constant-Q counterparts. Also, the convolution

property, absent in the short-time Fourier transform, does

not exist for the CQT.

±t



CHAPTER 4

IMPLEMENTATION OF CONSTANT-Q ANALYSIS AND SYNTHESIS

4.1 Introduction

As with the short-time Fourier transform, the

usefulness of the constant-Q transform depends on the

existence of theory and algorithms which enable it to be

applied to discrete data. This need has been met in the

first instance by the discrete Fourier transform and by the

fast Fourier transform (FFT) algorithm. This chapter

considers the problem of computing discrete forward and

reverse constant-Q transforms of discrete time data.

Issues not involved in a similar discussion of constant

bandwidth transform implementation will be shown to arise.

The discrete theory and algorithms used in this research

will be presented, as will comments concerning other

possible implementations.

4.2 Sampling the Constant-Q Spectral Domain

As was pointed put in Section 2.2, the schemes by

which the short-time spectral domain may be sampled without

loss of information are limited by the analysis window,

which imposes a constant time and frequency resolution on

the spectral information. The extension of the thinking

formalized in Section 2.2 to the problem of sampling the
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constant-Q spectral domain is complicated by the dependence

of T (w) and F (w) on frequency. The solution of this

problem necessitates the formalization of some simple

ideas. First, define F (w) to be the -3 decibel frequency

extent of the analysis window function, h(t), and 63 to be

the constant product of T (w) and F (w). Then

- = T (w)F (w) (4.])
'33

Q = w/F 3 (W) (4.2)

Thus, we have an explicit relationship among frequency and

the time and frequency resolutions at that frequency.

T (w) = 3Q/W (4.3)

F (w) = _w/ 3Q (4.4)

Table A.l of Appendix A lists values of 3 for a few common

window functions. Equations 4.3 and 4.4, combined as in

Section 2.2 with the Nyquist theorem, give rise to lower

bounds on the local instantaneous sampling densities along

the frequency and time axes, respectively. Thus, for

example, a Hann window spectral domain whose 0 is 3.0 is

minimally sampled with a frequency interval of 173 Hertz

and a time interval of 1.4382 milliseconds at 1000 Hertz.

The same domain at 50 hertz must be sampled at least every

8.6914 Hertz in frequency, but only 28.7641 milliseconds in

time. In general, if At(w) and Af(w) are respectively the

time and frequency sampling intervals at w,
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At(,) < 2.r/F (w) = 2-r' 3 Q/2W (4.5)

Af(w) <_ 1121T (M = w/27 3Q  (4. 6)

4.3 Design of a Constant-Q Filterbank

Because to date no useful analog to the DFT has been

discovered for the constant-Q transform, the sampling and

resolution information described in Section 4.2 must be

used to design an analysis algorithm which ultimately

invokes discrete convolution to simulate at selected

frequencies the action of a constant-Q filterbank. The

character of an algorithm which correctly performs this

analysis is the subject of the present section.

As implied by 4.5 and 4.6, minimal sampling along both

the time and frequency axes is performed according to a

non-uniform scheme. The problem of determining at what

points the continuous spectral domain ought to be sampled

is simplified by considering the domain to be the output (-f

an analog filterbank. It is then necessary to specify

individual band center frequencies and bandwidths. Figure

3. 4 shows a portion of an idealized filterbank which

minimally samples the frequency dimension of the constant-Q

spectral domain. The relationship between adjacent band

center frequencies is established by the following

observation, given that the window function, h(t), is real

(the demodulated filter magnitude must be even):



k+l-wk + (4. 7)
2 2

(See Figure 4.1.) By substituting the expression for t he

instantaneous frequency sampling interval given in 4.6 and

by simple algebraic manipulation, the ratio, R, of adjacent

band center frequencies may be determined.

Wk+1 2Q 3+l 4.1
R =- = (4.P)

W k 2Qe.3 -1

This ratio, along with the location of any hand in a

constant-Q filterbank, determines the location of any other

band as follows.

k= ~WknRn  (4.9)

Hence, an analog filterbank which performs constant-Q

analysis using a minimal set of bands is completely

specified by defining the basic window or filter function

(from which is determined) , the analysis Q, the total

analysis bandwidth, and the center frequency of any

analysis band.

4.4 Implementation Details

Until this point, the discussion of sampling has

assumed continuous time signals and a finite set of analog

filters. Thus, only the frequency dimension has been

discretized. Discrete-tim- implementation of the

above-specified filterbank is straightforward, requiring

application of digital filter design and biplexed 122),

fast convolution [23]. Careful attention must be given to

IA
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Figure 4.1. Relationships among adjacent filters in a
minimally-sampled constant-Q filterbank. This development
assumes real analysis window functions (which have even
frequency-domain magnitudes).
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issues such as elimination of differences in the linear

phase introduced by the complex modulation of the various

analysis filters. The maximum interval over which the

output of the kth band of the filterbank may be sampled is

that given by

At(wk) =2- B3Q/ -w k  (4. 10)

In practice, all analysis channels may be designed to

operate at a common sampling frequency which is greater

than or equal to the total analysis bandwidth. Hence, for

analysis of a segment which has been bandlimited to 2wh and

sampled at wh/T, the total computational expense is equal

to the sum of the costs of the individual complex

demodulations and fast convolutions for each analysis band.

Of course, this uncomplicated implementation, shown in

Figure 4.2a, is wasteful of computational resource. That

this is so is made obvious by comparing the total signal

bandwidth, 2wh, at which analysis is performed, with the

bandwidths of the highest and the lowest analysis output

bands, wN and w, given typical analysis parameters. With

a third octave Hann filterbank whose highest channel is

centered at wN and whose lowest channel is centered at

01wN, the portion of computation performed unnecessarily

varies between 54% at the highest channel and 99% in the

lowest, with the average waste equal to 88%. Much of this

unnecessary computation could be eliminated by bandlimited

resampling of the individual complex channel signals after
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complex demodulation and prior to (or possibly as a part

of) lowpass filtering. Rabiner and Crochiere 24] have

described an efficient algorithm for performing bandlimited

sampling rate reduction. Their method is a multistage

extension of the technique described by Schafer and Rabiner

[25] wherein a rate change by a rational factor is

accomplished by dsing a single operation which views a rate

change as a cascaded interpolation and decimation, and

takes advantage of the bandlimiting by computing only the

necessary output points, and by avoiding multiplications

involving zeros in the input. The multistage technique

cascades such optimal interpolators and decimators to

achieve large efficiency improvements, while preserving

linear phase and reducing much of the finite arithmetic

error associated with the less efficient canonical schemes.

Moreover, most of the advantage of the multistage algorithm

is gained with only two stages of interpolation and two

stages of decimation, all of which may be automatically

designed and implemented. Another significant

characteristic of analysis using such a system is that the

filtering step in analysis may be performed using a single

filter rather than the several individual analysis filters

suggested by equation 3.5. This scheme for constant-Q

analysis is presented in Figure 4.2b. As in the

straightforward implementation, attention must be given to

the correction of phase disparities which may develop among

the analysis channels as the result of non-zero phase
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resampling filters or because of a non-zero phase anal ysis

filter which is operating on signals of differing sampling

rates.

An alternative computational algorithm recently

suggested by Kates r261, in connection with

perception-related analysis of loudspeaker performance,

achieves computational elegance at the cost of the

necessity of uniform sampling in both time and frequency.

Kates's simplification consists of the restriction that

window functions, h(t), be decaying exponentials. If we

define h(t) as,

fe - it t>0 (4. 11)

h(t) 
e P

[0 t<0

where p is a positive, real constant, then 3.2 may be

written as

F(w,t) = f f()e W(t-T)e-jWT dT (4.12)

For any analysis time, t0, it can be shown that 4.12 is

equivalent to

0

F(W,t 0 ) = e-JWt0 f (t) e W(j+U) dt (4.13)

where f (t) = f(t+t0) . This is easily discretized byto0
periodically sampling f (t) from t=O at a rate at least

to
equal to its bandwidth in Hertz. Then,



Pcbw = eJ t F(e t 0 ) n=0O ft0 (n)en ( ) (4. 1A

Notice that the z-plane has been evaluated, not along the

unit circle, but along the spiral given by z=e e>'. This

particular form of the z-transform is implementable using

the chirp z-transform algorithm [27].

Still other implementation schemes are possible, such

as that currently being investigated by Tracy L. Petersen

(28] employing IR analysis filters, and the use of

charge-coupled device (CCD) technology which promises

significant computation speed improvements for a limited

set of applications.

4.5 Minimum Overall Sampling Rate

The non-uniform minimal sampling scheme described in

Section 4.4, along with the notion presented in Section

1.2, that constant-Q analysis resembles more clearly than

short-time Fourier analysis the dissection of sound

performed by the human ear, suggests the possibility of a

difference in overall sampling rates needed to represent

the respective domains. The overall rate for either

spectral domain is easily derived as the sum of the

individual rates over all the channels. For constant

bandwidth analysis this overall rate, Pcbw' is

N
Pcbw = I 2pcbw = 2NPcbw (4.15)

k=1

where pcbw is the rate for each channel. Thus,

~~cbw
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2nAf At 2ir 7T

For constant-Q analysis we sum over a number of channels

which grows without bound as zero-frequency is approached.

The overall rate, P cq for constant-Q analysis is

cq = 2pcqWk (.1

From equation 4.5

P 2 1 (418)
cq k=0 At(wk) k=O 27 3 Q

Then from equation 4.9

cq N (4 19)

cq 6 3Q k=0

Noting that R must be greater than one, the geometric sum

may be evaluated. If the 4.8 expression for R is then

substituted,

6w N 26 3Q+lP _- _ (4.20)
cq 26 3 Q

For the values of 0 (3<Q 20) and 3 ( 6=1.4) used in this

research, the latter factor is about 1.1. Hence,

Pcq -Pcbw (4.21)

In practice, where the portion of the band near to zero

frequency is not sampled, this disparity decreases.

4.6 Computation of Constant-Q Spectral Magnitude and Phase

The final topic to be considered in this chapter on



the theory affecting implementation is the computation of

the constant-Q spectral magnitude and phase functions from

the analysis output. That the spectral domain is complex

valued is obvious from equation 3.3 which shows F( ,,t) for

any analysis frequency, = , to be the output of a linear

system whose input is a complex demodulated real signal.

If we denote the real and the imaginary parts of the

constant-Q spectral domain as follows,

F(Wk't) = FR(Wk,t)+JFI((k,t) (4.22)

then the spectral magnitude and principal value phase

functions are computed in the usual manner as

M(Wk,t) = {F(w k,t)F (wk,t)} (4.23)

tan (FI(Wk,t)/FR(Wk,t)) FR>0, all F I

8(Wk't) tan- (FI( Wk' t)/FR(Wk,t))+n FR<0, FI>0 (4.24)

ta-1

tan (FI (wk,t)/FR (Wk, t))- FR<0, FI<0

It should be noted that the above non-linear operations

inevitably produce signals which are not band-limited when

bandwidth is measured in terms of conventional rectangular

width. Hence, it is possible that magnitude and phase

functions, computed from adequately-sampled complex data,

F(w kt), could be undersampled. It is also true, however,

that the undersampling of the magnitude is not serious.

Undersampled areas of the waveform inevitably occur in the



magnitude troughs created where either the real or the

imaginary part changed sign. Hence, such low energy areas

contribute but a small fraction of the total spectral mass.

The phase function, on the other hand, when either the real

or the imaginary part becomes very small, experiences rapid

movements and even discontinuities of 1 , regardless of

efforts to bandlimit it by oversampling. The Froblem of

correctly estimating the spectral phase function is further

complicated by "leakage" through the side lobes of the

analysis filter, and by finite arithmetic error. These

problems, compounded by the fact that only the principal

value or wrapped phase is directly computable from the real

and imaginary parts, make the estimation of the spectral

phase function difficult, particularly in the broadband

high frequency analysis channels.

A number of techniques for the estimation of the

sampled spectral phase function were investigated during

the course of this research. Three general techniques,

labelled Methods I, II and III, are outlined below.

Method I for constant--Q spectral phase unwrapping

circumvents the necessity of removing the 27 jumps inherent

to the principal value inverse tangent function by directly

estimating and integrating the time derivative of the

phase. The phase derivative is estimated [l) using the

property that
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O(wk ' t) = t-tan (FI/FR) (4. 25)

k' t).F - F I-F FR (4.261

k 2 2 F 1f2

where 0( ,t) represents the time derivative of the truek

unwrapped phase. F =F ( ,t) and F =F (w ,t) , and F anR R k IlIk R

F are the respective time derivatives. Then,

t
O(wkt) f o (kFt) dt (4.27)

0

The difficulty with this otherwise elegant scheme is that

in a sampled implementation the derivative and integral can

be computationally expensive procedures which are, at best,

subject to the limitations of finite arithmetic. Hence,

the discrete integral may drift from its true value. To

minimize this effect, second degree interpolators were used

to estimate the sampled derivative and integral functions

as follows:

FR i) = (F R(i-2)-8F R(i-l)+8FR(i+I)-FR(i+2))/12 (4.28)

FI(i) = (FI(i-2)-8Fi (i-l)+8FI(i+l)-FI(i+2))/12 (4.29)

S(i) 0 1(i-l)+(50 (i-i)+86ii-i (i+l))/12 (4.30)

where F i)=FR (k,iAt (wk)) and FI (i)=FI (w k ,iAt (w k)), and

where,

FR(i)FI (i)-FI (i)FR(i) (4.3)
I~) = 2 2 (.]

FR (i)+F I (1)

A second general method, Method II, due to Portnoff



[llI, assumes the accuracy of the discrete phase lifference

as an estimate of instantaneous frequency. Given this

assumption we may argue that because each analysis channel

signal is bandlimited, the instantaneous frequency of each

channel must be similarly bandlimited. Thus, if a channel

is sampled at at least twice the rate implied by its

bandwidth, the values of the true phase difference must

fall in the interval, (-r/2,n/2). To unwrap phase under

these assumptions, we simply add or subtract integer

multiples of T to the wrapped phase difference until this

condition is met, and then calculate the unwrapped phase as

the running sum of the corrected phase differences. An

equivalent form of this method, which avoids the

accumulation of arithmetic error in the sum is given by

[ !i~ -l)-8 (i)

0ii(i) = 0 (i)++ 1 + (4.32)

where o (i) and e (i) are respectively the wrapped phasep I

and the estimate of the true, unwrapped phase for a given

channel, and LxJ indicates the floor of x (the largest

whole integer in x). The difficulty with this scheme lies

in the initial assumption which, for the broadband high

frequency constant-Q channels, fails frequently.

Still another method which was investigated, Method

III, utilizes the estimate of the phase derivative as

computed in Method I, in conjunction with the knowledge

that the true phase can differ from the unwrapped phase

only by integer multiples of . Hence, to estimate the
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phase at any point, t.- phase derivative is estimated at

that point and integrated to produce a phase estimate from

which a phase difference may be computed. The estimated

phase difference is then added to the phase estimate of the

previous point (assumed now to be correct) . This new value

is then forced to the r-.earest value which differs from the

wrapped phase by an integer multiple of TT Formally, this

method is expressed as,

III L 9 4.3

where a Ci) is the wrapped phase, a0 (i) the Method I

integrated phase derivative estimate, an~d 6 11 i) the

Method III phase estimate. Clearly, the sources of error

in this method are the inaccuracy in estimating the phase

derivative function, and the integration of the phase

derivative across the interval between the previous point

and the current point. The cumulative integration errors

inherent to Method I do not, however, occur in this method.

Variations of the three methods outlined above were

all found to perform imperfectly. The assumption made in

Method 11, while excellent for narrow band low frequency

channels, was inadequate for high channels. The reason for

this is shown in Figure 4. 3, which is a histogram of phase

differences computed on the output of Method I for a high

and a low channel (both channels were oversampled by a

factor of three) . A signal synthesized after unwrapping

using Method I contained less error-induced noise than the











(1

is proportional to the preemphasized spectral magnitude,

IJwF(wt) . Thus, the bright areas indicate the presence of

spectral power, while the darker background areas occur

where less activity is present.) Note the strong horizontal

line (and its harmonics) corresponding to pitch, as well as

the perioaic pitch-related variation in the energy of the

higher frequency structures often referred to as formants.

* A



CHAPTER 5

TEMPORAL AND HARMONIC SCALING

5.1 Introduction and Background

The auditory system is, next to the visual system, the

broadest bandwidth channel available for communication with

the human mind. Indeed, when comprehension is used as a

measure, evidence [29] suggests that the auditory channel

may exceed the visual channel in its usrfulness in

information transfer. Yet, as anyone can observe, the mind

is capable of comprehension rates well beyond the rate at

which speech is normally articulated, and even beyond the

rate at which it can accurately be produced by the vocal

tract, which has a practical upper limit around three

hundred words per minute. In recognition of this fact,

Fletcher [30] in 1929 experimented with increased speech

presentation rate. These experiments involved simple time

scaling of the speech waveform by modifying the speed of a

mechanical playback medium. Fletcher found that the

accompanying spectral distortions, the scaling of the

frequency domain by the inverse of the time domain scaler,

imposed a rather narrow limit on the range over which

speech so-processed is intelligible. Later work by

Steinburg [31] confirmed Fletcher's basic result that

-- 4••
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intelligibility drops off rapidly from 80 per cent for time

scale factors outside the interval 0.7 to 1. 2. Fundamental

understanding was later applied to the prob2em by Miller

and Licklider [32], who recognized the existence of

redundant information in the speech waveform, particularly

during vowels and pauses. Interested primarily in taking

advantage of this redundancy to facilitate time

multiplexing of speech on limited bandwidth channels, they

showed that periodic deletion of segments amounting to 50

per cent of the total waveform, if performed at the proper

rate, would reduce intelligibility less than 10 per cent.

This information was soon applied by Garvey r33] to the

speech rate compression problem. Garvey investigated the

possibility of concatenating the segments created by Miller

and Licklider's deletions, thus producing a time signal

which could be substantially shorter than the original, but

whose spectral content had not been materially changed.

Performed by magnetic tape cut and splice, Garvey's

experiments showed better than 90 percent intelligibility

for compression factors as high as 2.5, and linear decay of

intelligibility to 40 per cent for a compression of 4.0.

This successful method was soon automated by Fairbanks [341

and others, and remains the philosophical basis of the bulk

of compression work to the present. More recent work

includes the use of digitized signals which can be easily

manipulated to allow pitch-synchronous splicing of segments

(see references given in Chapter 1 of Portnoff 111).
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Wh ilIe reducing the worst of the artifacts due to arbitrary

splicing, the difficulty of tracking pitch accurately,

particularly where noise is present, can cause such

algorithms to behave poorly.

Crude as these methods seem, they have helped e ef in e

what is meant by speech compression. As Fletcher showei at

the beginning, a speech compression algorithm must

delineate between speech characteristics which are

perceived in time and those which are perceived as hav ing

frequency significance. Furthermore, as noticed by

Fairbanks and others, the preservation of waveform

intelligibility requires that modifications be made over

distances longer than fundamental wavelengths, but shorter

than the duration over which the harmonic character of the

signal can change. The division of information into what

is referred to herein as temporal and harmonic information

is a notion familiar to builders of vocoders, where

bandwidth is greatly reduced by extracting and transmitting

slowly varying harmonic information as a function of time.

Hence, the vocoder is a natural tool for speech

compression/expansion. in a vocoder rate change system the

parameter signals produced by the analysis are compressed

or expanded in time prior to synthesis. During synthesis,

the implicit harmonic content is restored, unaltered.

Hence, in theory, only the temporal scale is modified.

Probably the highest quality result obtained in vocoder

speech compression/expansion to date was reported by





In an argument in favor of temporally adaptive time

resolution in vocoders, Patisaul and Hammet f151 conclude

that

there is no optimum compromise in
time-frequency resolution. Instead, the
'filter' nature of the hearing process, the
extremes in the articulatory dynamics of speech
production, the desire for the validity of the
stationary model and the concept of a
time-frequency cell 'matched' to the signal
suggest that the shape of the resolution
rectangle in vocoder spectrum analysis should
be adapted to the signal. [p. 12983

Evidence indicates that a constant bandwidth analysis is

consistent with neither the human auditory system in

general nor with a correct formulation of the rate

compression/expansion problem in particular. For examrie,

recent automatic phoneme recognition work by Searle [6]

suggests that information by which various burst and stop

phonemes are recognized occurs with time resolutions finer

than 20 msec, and probably as fine as 5 to 10 msec. The

auditory system, on the other hand, hears tones with

fundamentals longer than 20 msec. Thus, the constant-Q

transform, which maps signals into a two-dimensional space

where time and frequency resolutions are dependent on

analysis frequency, provides a more natural tool for

per form ing independent modi fications to temporal or

harmonic aspects of signals. The problem, then, of

defining what portions of a signal ought to be compressed

or expanded in a speech rate change system is at least

partially solved by requiring the time-frequency boundary

__ -III I



to be a variable related to the ear's frequency-dependent

boundary.

5. 3 Constant-Q Temporal/Harmonic Compression/Expansion

The approach to rate changes taken in the work

reported here utilizes a property of the constant-Q

transform not shared by the short-time Fourier transform.

This property, proved in Section 3.6.2 is as follows:

f (at) -+ F(w/,a,at)/I I (5.1)

This property can be used to relate a change of scale of

either the temporal or the harmonic spectral information to

a change of scale of both the time domain signal and the

other spectral axis. Assume, for example, the possibility

of scaling the temporal axis of the constant-Q spectrum by

. This would give a new spectral function, F'(w,t),

F'(w,t) =  F(w,at) (5.2)

If the signal, f'(t), resulting from substituting F' (w,t)

into 5.1 were time scaled by I/a, the result, F"(w,t),

using the constant-Q time scaling property would be

F"N( ,t) = JajE' (aw,t/a) -(- f' (t/a) (5.3)

This may be written in terms of F(w,t) as,

F"(w,t) = IaIF(aw,t) (5.4)

Thus, as illustrated in Figure 5.1, a harmonically s-aled

L | |



constant-Q spectral domain is related to a temporally

scaled constant-Q spectral domain by a change of the

signal's time scale.

5.4 Implementation of a Constant-Q Compressor/Expander

Because of the relationship explained in the ,-b ve

section, independent scaling of either the temporal or the

harmonic axis may be performed if one or the other is

possible. Both methods will be outlined in the following

sections, which review the issues involved in temporal or

harmonic scaling.

5. 4. 1 Temporal Compression/ /ansion

Modification of the scale of the temporal axis of the

constant-Q spectral domain can be performed as indicated in

Figure 5.2a. In this block diagram, each channel output of

a continuous-time, discrete frequency analyzer is time

scaled by prior to ordinary synthesis. As shown, this

time scaling of discrete-time data is accomplished by

resampling the data while holding the implicit sampling

frequency constant. Thus, for example, if an analyzer

channel output is represented as F(wk ,it(Wk)) , the time

scaled channel data may be written as

Fa(wkhiAt(Wk))=F((wk , iAt(k)) . This is efficiently

accomplished for any rational scalar, a, using a method

such as that described by Rabiner and Crochiere f241 (see

Section 4.4). However, because each channel signal is

itself subject to the Fourier scaling property, this

-I-
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time-derivative, proposed above as a means of modifying

channel bandwidth, was used in this research with good

results, another approach suggests that the scaling of the

phase derivative may be only an approximate solution to the

problem of bandwidth scaling. This different approach will

be described in the present section.

The problem of scaling the bandwidth of a complex

analysis output channel can be best solved if (1) a model

describing such signals in a general way exists and if (2)

a relation exists which measures bandwidth in terms of the

model's parameters. Such a relationship has been described

by Kahn and Thomas [36] for amplitude and and angle

modulated (AAM) signals of the form

x(t) = M(t)ejo(t) (5.15)

In this model, M(t) is an amplitude-modulating function

equivalent to the constant-Q spectral magnitude, and 8(t)

is a phase modulating function equivalcnt to the constant-Q

spectral phase. Kahn and Thomas point out that, in

general, the modulating functions may have infinite

bandwidth, but that in practice, most spectral information

is concentrated within a finite band. They propose, as a

useful measure of this bandwidth, a second moment measure

of the spread of the power spectral density. If by SX (t,w)

we represent the power spectral density function of x(t),

and if R (t,T) equals the autocorrelation function, thenx
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S x(t,W) = f Rx(t,T)e-J dT (5.16)

and

R (t,T) = E{x(t)x (t-r)} (5.17)x

where E{) denotes mathematical expectation. The

instantaneous bandwidth, 2i (t) , can be defined by the
x

normalized second moment as follows:

x (t) = {J w2 S x(tw) 12 d i} /{f [Sx(t, )I 2 d4} (5.18)

This may be rewritten, using Parseval's theorem and the

differentiation property of the Fourier integral transform

[141, as

(t) = {R x (t,T) } (5. 19)

6t2  /{=

x(t) =iE{lx(t) 12 }/E lx(t) 12}1 (5.20)

Substituting x(t) from 5.15, and assuming M(t) and 0(t) to

be real-valued and differentiable, and E{M(t)M(t)0(t)}=0,

{E{M2(t) +M2(t) e2(t)}

S(t)= (t)}(5.21)

This can be written, in light of 5.19, as

x {M,()
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2(t )  : 42 E{M2 (t) 2(t) 
(

2t) 2M(t) +  (5. 22)
E{M2 (t) }

An interpretation of this result is simply that the total

bandwidth of an AAM signal has components which are due to

(i) the bandwidth of the amplitude modulating signal, and

to (2) the phase modulating signal. In the case where the

amplitude modulating signal is a very slowly varying

function, 5.22 depends linearly on the phase modulating

function, and the approximation presented in Section 5.4 is

exact. If, however, the amplitude modulation portion of

the bandwidth is a significant, but not dominant, portion

of the total bandwidth, simple phase scaling will lead to

inaccurately-scaled bands. This error, in cases where

bandwidth is being expanded, leads to misplaced spectral

data, and possible spectral holes, giving rise in extreme

cases to an effect similar to comb filtering. To determine

a corrected factor by which the phase derivative should be

scaled, assume that a correct bandwidth-expanded signal,

Cc, is given by,

C (t) = M (t)cosfwkt+Oa(t)} (5.23)

and that,

M (t) = iM(t) (5.24)
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A (t) = a 2 0 (t) (5. 25)

where a1 and a2 must be real. Then,

2, 2 E{M 2 (t) }+a 2E{M2 (t) 52 (t) }22 2 (5.26)
a E{M (t) }

Note that a has no effect. Substituting the equation 5.22

expression for C into 5.26, the value of a2 can be

determined.

2 = a[l+(l-a- 2)E{M2(t)]/E{M2(t)6 2 (t) ]] (5.27)

This equation implies a conditional relationship between a

and a 2 . When expanding bands (a>l), the number by which

the phase derivative must be scaled to scale the bandwidth

by a is greater than a. When contracting bands (a<l), the

opposite is true. It should be noted that when the

amplitude modulation contribution, E{M2(t) }/E{M2(t) },

dominates the total bandwidth, 5.27 may become imaginary.

This effect corresponds to a lower limit on the total

bandwidth reduction available using the assumptions of

equations 5.24 and 5.25.

5.6 Results

The procedure outlined in this chapter for the

independent time or frequency scaling of signals was found

to produce good quality results over a range of scaling

parameters. Rate compression was achieved for factors up



to four, at which point intel] iqibility was -,raade

primarily because of the inability of the mind to

assimilate rapidly enough. It was also noted that phonemes

which occur naturally over very short intervals tend to

disappear at high compression ratios. This phenomenon

represents a fundamental limit to the uniform definition of

compression adopted here, which can be circumvented only by

selectively compressing features in a non-uniform manner.

Such an investigation is beyond the scope of this work.

Expansion experiments were successfully performed for

factors as low as one-third. The speech expansion

experiments revealed two fundamental difficulties in

constant-Q expansion.

First, for values for Q thought to be comparable to

the selectivity of the human auditory system (see Section

1.2), the constant-Q transform was found to have

time-resolution at high frequencies which was too fine. As

shown in Figure 5.4a, the magnitude of high frequency

formant information appears to be modulated pitch

synchronously. The result is that when the time scale of

the high bands is stretched, and the bands are remodulated,

a false modulation of these bands occurs at a frequency

equal to the old pitch scaled by the expansion factor. In

expansion, this results in subjective effects best

described as granularity or roughness of the voice. This

effect is reduced or eliminated by increasing the

selectivity of the analysis, thus reducing the fineness of





the transform's time resolution. Spectrograms with reduced

time resolution (increased C) are shown in Figures 5.Tb and

5.4c. Temporally expanded synthesis was performed using

Q=19. This adjustment corrected the granularity problem

without introducing any undesirable side effects.

The second difficulty which was made evident by the

expansion experiments was the presence of artifacts due tn

spectral phase unwrapping errors. Such errors may be

eliminated for compressions by even integer factors when

unwrapping methods are used which modify the wrapped phase

only by integer multiples of TT In such cases any error

becomes effectively zero (a multiple of 2-1) during the

expansion of the individual bands. In speech which has not

been expanded by even integer factors, errors of this

variety, because of their random nature, produce a

low-level "gurbling" sound. This effect results because

the phase shifts produce random constructive or destructive

interference among overlapping channels.

Because of the difficulty in properly characterizing

the spectral phase function, tests by which the unwrappers

mentioned in Section 4.6 could be evaluated were difficult

to design. The above-mentioned property of expansion by

even integer factors provided one good test. In such a

test, wrapped and unwrapped spectral phase functions were

both temporally expanded, synthesized, and compared. Error

other than integer n error! appeared as differences between

the two syntheses. Comparison of the effect of expansion
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imaginary parts. The algorithm was shown empirically to

perform better than two other more common methods.

The first high-resolution constant-Q spectrograms of

speech have been produced.

Finally, the usefulness of the CQT in actual signal

processing has been demonstrated by application to the

perception-related problem of rate modification of speech.

Good quality modification was achieved for rates between

1/2 and 4. Limitations, some inherent to the notion of

rate changing, some resulting from the nature of a CQT

implementation, and some computational, were explained.

6.2 Further Research and Suggested Applications

The CQT has been established as a well-defined tool

for aud io, processing. Its potential usefulness, however,

appears to be limited primarily by lack of a fast

computational algorithm analogous to the FFT. Processing

times on a dedicated PDP-10 processor are currently on the

order of 10 3times real time. The development of fast

algorithms for computing and processing minimally-sampled

COT spectral data is an area which merits future

investigation.

Other general areas not related to implementational

and computational issues are naturally suggested by the

analogy that exists between the COT and the peripheral

auditory system. Noise suppression using two-dimensional

spectral subtraction or thresholding would be able to track
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more closely in time rapidly changing high frequency

information, while better resolving in frequency the low

frequency portions of a signal. This frequency-specific

resolution might reduce effects related to leakage of noise

in areas where the ear is capable of fine resolution.

Acoustic enhancement experiments analogous to the

well-known visual enhancement procedures seem promising.

Constant bandwidth experiments, performed by Callahan using

two-dimensional techniques suggest the potential of such

experiments if performed in the constant-Q spectral domain.

Studies by Searle 16] indicate that a transform which

more closely emulates the analysis performed by the human

ear could be advantageous in the automated recognition of

speech. Information essential to the recognition of stops

and bursts seems to occur with resolution finer than

conventional analysis provides. As constant-Q algorithm

speed improves, a system based on two-dimensional

constant-Q recognition merits investigation.

Finally, the similarities between the distribution of

information in the constant-Q spectral domain and auditory

analysis suggest uniform quantization of a

minimally-sampled constant-Q spectrum as a means of

reducing overall bandwidth at minimal perceptual expense.



APPENDIX A

RESOLUTION PROPERTIES OF WINDOWS

The scaling property of the Fourier integral transform

indicates a reciprocal relationship between the scale of

events measured in the time and frequency domains.

Specifically, if h(t) is a time function defined over all

t, and if the integral,

H(w) = f h(t)e - j wt dt (A.1)

exists, then it is true that

H(,/a)/clI = f h(at)e - jwt dt (A.2)

If we define some characteristic time length, T, and a

characteristic frequency length, F, then the above

relationship guarantees that the product, 8, of T and F is

a constant.

8 = TF (A. 3)

The value of 8 is wholly dependent on the function, f(t),

and on the definitions of T and F. This property provides

a simple way of relating the time and frequency resolution

of an analysis window. We adopt the convention that

resolutions In either domain will be measured as the width
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of the principal interval centered on zero during which the

function is attenuated less than a decibels from its

maximum value. In the time domain, for common windows such

as the Fourier, Hann, Hamm ing, Blackman and Bartlet

windows, we pick a =w. Thus, TW, is the total non-zero

length of a window. In the frequency domain, two measures

are useful, Fand the so-called 3 decibel bandwidth, F 3.

From these we may define and compute values for the

analysis window resolution products,

OD=TmF (A. 4)

a3=TF (A.5)

Table A.1 lists values of and B3for the windows

mentioned above. Values fo r 08 are exact and can be

arrived at analytically; values fo r 3are determined

numerically.

A~4i -
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APPENDIX B

SUPPLEMENTAL MATERIAL RELATIVE TO

GENERALIZED SHORT-TIME FOURIER SYNTHESIS

B.1 Validity of Generalized Short-time Fourier Synthesis

The continuous short-time Fourier transform, F(w,t),

of a function, f(t), is given by

F(w,t) f f(0)h(t-t)e-JWT d (B.1)

Allen and Rabiner [15] have described two

commonly-understood methods for synthesis of f(t) from

F(w,t). The two syntheses, the filterbank summation (FBS)

method and the overlap-add (OLA) method are given in their

continuous forms by equations B.2 and B.3, respectively.

f(t) = f F(w,t)ejWt dw/27rh(Q) (B.2)

f(t) = ff F(w,t)ejt dw di/2i (B.3)

The analysis maps signals of the form, f(t), from the

line into a subclass of the plane in such a way that, in

the absence of spectral domain modifications, the reverse

mapping can be made with perfect fidelity using either B.2

or B.3. The set of spectral domain signals of the form,

F(w,t), which is reachable via B.1 is restricted in

resolution by the analysis window, h(t). Signals which are

.... .. .. .... .. .. ,- _ - n.o w
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not so-constrained are, nevertheless, also reverse mappable

onto the line by members of a set of functions, called

retracts, of which B. 2 and B.3 are examples. The way in

which this reverse mapping occurs is determined by the form

of the retract, and is of importance when considering the

effects of spectral domain modifications which violate time

or frequency resolution constraints placed on spectral

domain signals by h(t). The OLA and FBS synthesis do not

exhaust the possible forms of a more general class of

retracts useable for short-time Fourier synthesis. Rather,

they are special cases of the general retract,

1
f(t) = ff F(W,T)g(t-r)ejWt dw dT (B.4)

2n<g,h>

where <g,h> is the inner product,

<g,h> = f g(t)h(t) dt (B.5)

The FBS and OLA synthesis are easily seen to be special

forms of B.4. In particular, the FBS synthesis is obtained

given the condition,

g(t) = 6(t) (B.6)

where 6(t) is the Dirac delta function. Similarly, the OLA

synthesis is obtained if

g(t) = 1 (B.7)

and if the area of the analysis window is unity.

We now show that B.1 and B.4 form an

... . . --.. . . . . . -" i iI I I . ..
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analysis-synthesis identity by substituting B.1 into B.4

(renaming the result).

~1
f(t) fff f(C)h(- )e - jW d g(t--)eJwtdw dT(B.8)

2v<g,h>

Modifying the order of integration, the complex

exponentials may be combined and isolated,

1 1
f(t) = f f( ) f g(t-T)h(t-C) - f eJw(t- )dWddC(B.9)

<g,h> 2r

and then integrated,

"1
f(t) - f f(0)6(t-O) f g(t-T)h(T-C) dT d (B.10)

<g,h>

With the change of variables, -=t-T

~1
f(t) f f( )6(t-C) f g(i)h(t- -) dp d (8.11)

<g,h>

If we then define

p(x) f g(U)h(x-p) dp (B.12)

then B.10 may be simplified to

11
f(t) =  - f f(C)6(t- )p(t-C) d (B.13)

<g,h>
~1

f(t) = f(t)p(O) (B. 14)
<g,h>

Finally, we recognize from B.12 that p(0) is just the inner

product, <g,h>. Hence f(t) = f(t), and the validity of

B.4 as a retract of B.1 is shown.

B.2 Intuitive Description of Short-time Synthesis Issues

The meaning of B.4 is better understood by performing
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the indicated integration with respect to w. This gives,

1
f(t) = _ f Ft(t,T)g(t-T) dT (B.15)

<g,h>

whereFt(t,x) denotes the one-dimensional inverse Fourier

integral transform of F(w,T) with respect to its first

(frequency) parameter. An expression for the function,

Ft(t,T), may also be derived from B.1 by performing an

inverse Fourier integral transform along the w-axis. This

yields,

F t(t-T) = f(t)h(t-T) (B.16)

Note the change of variables. The time variable of the

short-time Fourier transform has been renamed 'E The

function, Ft(t,T) is illustrated in Figure B.)a for a unit

pulse input,

S1 l<t<2
f(t) = (B. 17)

otherwise

and h(t) is is a Hann window.

Two methods of synthesis are obvious from the figure.

The first, corresponding to the FBS synthesis of B.2 is

achieved by evaluating Ft(t,T) along the line t=r (i.e.

g(t)=6 (t) in B.15.) As explained in Section 2.4,

modifications made along the spectral time (T) axis are

seen to "take effect" instantaneously in time -- no

time-resolution limiting occurs. One could, for instance,

time-limit the short-time spectrum at T=/7 and find that



Ft (t ,T)

t 12 t

t

F t (t, /

(F 1 (tT CT

/t

nI T

F ig u re B.1. Effect of frequency-independent short-time
spectral modifications.



the FBS synthesis had been similarly truncated (Figure

B. ib).

The other method of synthesis, the CLA synthesis of

B.3, is achieved by integrating (or projecting) F'(t,r)

along the T axis. This corresponds to g(t)=l in 8.15.

Note here that changes to the short-time spectrum are

limited in their time resolution by the shape of the

analysis window. For instance, an attempt to time-limit

the spectrum as above would give the result shown in Figure

B. lc.

In generalized synthesis, we pick g(t) somewhere

between the extremes of 6(t) and 1. The result of the

convolution of B.15 then causes effective changes along the

time (T) axis of the short-time spectrum to be

resolution-limited by the synthesis window, g(t).

Suppose now that the spectral modifications for the

extreme cases above occurred, not as a function of time

(along the z axis) , but in frequency (along the

transformed t axis). In this case, we might expect the

modified Ft(t,T) to appear as in Figure B.2a. Evaluating

along the diagonal, as in FBS synthesis, the edges of our

synthesized pulse cannot "ring" beyond the interval,

(1/2,3/2) allowed by the analysis window (see Figure B.2b).

Hence the attempted modification is time-limited to the

dimension of the analysis window.

However, if we evaluate by integration along T , as

shown in Figure B.2c, no time-limiting occurs, and the

_I - -
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modification is allowed with perfect fidelity.

Again, by picking the synthesis window, g(t) somewhere

between 6(t) and 1, the extent of time-limiting of

frequency axis modifications is controllable.

_ .. ..



APPENDIX C

CONDITIONS FOR THE CONVERGENCE OF CONSTANT-Q SYNTHESIS

Because analysis window functions have been defined to

to have finite non-zero extent, their Fourier transforms do

not. Hence, the existence of the synthesis integral,

?(v) = I (w,v) dv (C.1)

whe re

(w,v) = H((v-w)/w)/IwI (C.2)

(see 3.8) cannot be guaranteed on the basis of the

integrand's having non-zero value over a finite interval.

To establish the existence of C.1, it will be necessary to

determine restrictions on h(t) which guarantee the

integral's existence. This can be accomplished for a

fairly general class of windows using the following

assumptions. First, assume that if the Fourier integral

transform of h(t) is H(x), H(x) can be bounded above for

x exclusive of the interval, (-2,0), by ai 1/Ix+lI for some

finite constant, a I . This is the case for many windows

having finite non-zero time extent, since their transforms

can be expressed as a sum of shifted, scaled sin(x)/x

functions. It is true in particular that the windows

.9!-L
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mentioned in Table A.1 decay as 1/x. Second, assume that

H(x) can be bounded by 0 2 1x+l1 in the interval (-2,0) for

some finite constant, a . This restriction is realized for

the above-mentioned windows only if we restrict available

values of Q to a discrete set. The Hann window, as shown

in Figure C.1, satisfies this criterion when

f h(t)sin(t) dt = 0 (C.3)

for n=2,3,4,.... In terms of Q,

a . k n B .
Q = = (C.4)

a3 F.(wk) 453

Q = .6953114n n = 2,3,4,... (C.5)

Given the above and a a which is at least as large as the

maximum of a and 02' we construct a function, B(x), which

bounds H(x) as shown in Figure C.2a. We are now prepared

to examine the integrability of C.l. Notice in Figure C.2b

the effect of the change of variables, X=(v-w)/w.

Recognizing that B(x) > H(x) implies

B((v-w)/w) > H((v-w)/w), we conclude that the

integrability of B((v-w)/w)/IwI will imply the

integrability of H((v-w)/w)/Iwi. To establish the latter

implication, we integrate the bounding function piecewise

as indicated in Figure C.2b. This we write as



(b)

F(wk) V

n=6
Q=4.1718684

a

(c)

Figure C.I. Descretization of the set of allowed anal-ysis selectivities. The three graphs show the arrangementsgiving rise to the n=2, n=3, and n=4 values of Q al1owedfor the Hann analysis window.

Iq:3
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X+1

x+1x

+x)

x

(a)

V W

(b)

Figure C.2. A bounding function which guarantees the
existence of the constant-Q synthesis integral for a Hann
analysis window. The bounding function is indicated by the
heavy line in both (a) and (b)
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4p(V) < [ B(( -, I ,I[ d, (C. 6)

which simplifies to

( (v) < 41 (C.7)

Thus, our rather loose bound has established the existence

of -(v) for window functions which satisfy the criterion,

IH(x)l < B(x) x ( - ,= C.8)

where

-a/(x+l) x-2
-a (x+l) -2<x<- 1

B(x) = 
(C. 9)a (x+l) -f~x< 0

o/(x+1) O<x

for some finite a.

I T,= . . . - - - -" -i =_ _ ... "- ... .. " r-- : ''" - -. . . "- -



APPENDIX D

THE PHASE DERIVATIVE AS A MEASURE

OF INSTANTANEOUS FREQUENCY AND BANDWIDTH

A general complex signal may be represented as,

x(t) = a(t)ej(Wt+0(t)) (D.1)

where a(t) and c(t) may respectively be thought of as the

amplitude and phase modulating functions. The quantity,

"(t) = wt+O(t) 
(D.2)

provides informatiin about Instantaneous frequency and

overall signal bandwidth. This line of thought is

understood by observing the components of 0(t) as in Figure

D.l. As seen in this figure, if 0(t) were zero, the

frequency of the complex sinusoid, ejwt, would equal the

the slope, w, of the line, wt. For 0(t) non-zero, the

slope is not a constant, and thus the "frequency" of the

complex sinusoid, e j(wt+f(t)), must be measured

instantaneously as,

d = (D. 3)



Wtt

Figure 0.2. Phase-derivative and bandwidth.



Thus, (t) can be thought of as an instantaneous

perturbation of the center frequency, -- an instantaneous

frequency.

Plotting in Figure D.2 the function, (t)= +4 (t) , a

further interpretation of ;(t) is apparent. The

instantaneous frequency of x(t) may, for many practical

x(t), appear in a band around center frequency, j, whose

width is a function of the range of * (t) . The width of

this band may be thought of as a measure of the bandwidth

of x(t) . Clearly, scaling 4(t) (and therefore (t)) has

the effect of similarly scaling the width of this band. An

alternative to this measure of bandwidth is discussed in

Section 5.5.
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